

STN Bootloader

Firmware Update Specification for Devices
with STN Bootloader

STN Bootloader

Table of Contents

1.0 Introduction ..3
2.0 Features ..3
3.0 Basic Operation ...3
4.0 Communication Protocol ..4

4.1 UART Settings...4
4.2 Packet Format ...4
4.3 Control Characters ..4
4.4 CRC...4
4.5 Commands ..5
4.6 Responses...5

4.6.1 ACK Responses..5
4.6.2 NACK Responses ...5

5.0 Bootloader Commands ...6
5.1 Control Commands..6
5.2 Device Information Commands ...7
5.3 Firmware Upload Commands..7

6.0 Firmware Update Procedure...8
Appendix A: Firmware File Format..9
Appendix B: CRC Sample Code ..10
Appendix C: Device IDs..11
Appendix D: Revision History..12
Appendix E: Contact Information..12

 TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your OBD Solutions
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced
as new volumes and updates are introduced.

Most Current Documentation
To obtain the most up-to-date version of this document, please visit our web site at http://www.obdsol.com

You can determine the version of a document by examining its literature number found on the bottom outside corner of any page. The last
character of the literature number is the version number, (e.g., STNBLA is version A of document STNBL).

All rights Reserved. Copyright © 2011 OBD Solutions
Every effort is made to verify the accuracy of information provided in this document, but no representation or warranty can be given and no
liability assumed by OBD Solutions with respect to the accuracy and/or use of any products or information described in this document. OBD
Solutions will not be responsible for any patent infringements arising from the use of these products or information, and does not authorize
or warrant the use of any OBD Solutions product in life support devices and/or systems. OBD Solutions reserves the right to make changes
to the device(s), software, or firmware described in the document in order to improve reliability, function, or design.

2 of 12 www.obdsol.com STNBLA

 STN Bootloader

1.0 Introduction
STN Bootloader is a resident program that is

factory programmed into devices designed by OBD
Solutions. Its job is to write application firmware to the
device’s flash memory, allowing the device to be easily
updated in the field. The updates can be used to
remotely fix problems and add new functionality
without the need for costly product recalls.

OBD Solutions provides a free utility called
Firmware Updater (Figure 1) which can be used to
upload new firmware from any computer that supports
the Microsoft .NET framework. This utility is bundled
with every official firmware release.

Unfortunately, in certain circumstances (e.g., in
embedded environments), using the Firmware Updater
may not be feasible. This document is intended to be
used as a reference to allow programmers to
implement the necessary algorithms for interfacing with
STN Bootloader (version 2.x).

Figure 1 – STN Firmware Updater

2.0 Features
STN Bootloader has a number of properties that

make it ideal for carrying out remote updates:

• Tamper-proof. The bootloader resides in a
designated ‘boot block’, a small section of
protected program memory, which is
separate from application program memory.
The firmware images are protected from
tampering using strong military-grade
encryption.

• Brick-proof. The bootloader checks the
firmware that is being uploaded, to make
sure it is compatible with the device. If the

upload is interrupted, it can be safely
restarted.

• Superior noise immunity. Updates can be
done even over unreliable and noisy
connections. The bootloader features a
robust error recovery mechanism, and the
integrity of each data packet is ensured by a
16-bit CRC.

• Automatic baud rate detection allows the
firmware updater application to negotiate the
optimal communication baud rate.

3.0 Basic Operation
Devices that feature the STN bootloader operate in

three distinct modes:

• Startup mode
• Bootloader mode
• Normal mode

On startup, or after a hard reset, the device is in
startup mode, where it waits for a predefined amount
of time (by default, 200 milliseconds) for the bootloader
session to be initiated. If during this time the device
receives a Connect command from the host, it enters
bootloader mode, and remains there until a reset.
Note that the device will not respond to any bootloader
commands until it receives a valid Connect command.

If the bootloader session is not initiated within the
startup mode window, and valid firmware is present,

the device will enter normal mode and run the
application firmware.

If the firmware is not valid (e.g., a firmware upload
was interrupted by a power loss or a reset) the device
will remain in startup mode indefinitely, until it receives
the Connect command.

To enter bootloader mode, the host application
must first reset the device by cycling its power, pulsing
the RESET pin, or issuing a reset command (‘ATZ’ for
STN1100 family devices). After a short pause to give
the device a chance to restart (approximately 50 ms),
send the Connect command to the bootloader. If the
device replies with a “Connect ACK”, consider the
bootloader session started and proceed with the
firmware upload. See section 6.0 “Firmware Update
Procedure” for more information.

STNBLA www.obdsol.com 3 of 12

STN Bootloader

4.0 Communication Protocol
STN bootloader employs a basic communication

protocol that is robust, simple to use, and easy to
implement.

Flow control is built into the protocol. Thus, for
every received command, there is a response (an ACK
or a NACK).

All multibyte values are big-endian and are
transmitted most significant byte first.

4.1 UART Settings
The bootloader communicates with the host via

UART. The following communication settings are used:

• 8 data bits
• No parity
• 1 stop bit
• Automatic baud rate detection

The bootloader supports a wide range of baud
rates. All standard RS-232 baud rates are supported in
addition to a few higher baud rates. The following
formula can be used to calculate all supported baud
rates (expressed in bits per second):

Baud Rate
divisor

10,000,000
= ,

where divisor is an integer between 1 and 65,536.
Baud rate is automatically detected during the

reception of the first <STX> character of each
command packet. The bootloader will reply on the
same baud rate.

4.2 Packet Format
All data that is transmitted to or from the device

follows this basic packet format:

<STX><STX>[<DATA1>…<DATAn>]<CRCH><CRCL><ETX>

where each <…> represents a byte and […] represents
the data field. The start of a packet is indicated by two
‘Start of TeXt’ control characters (<STX>), and is
terminated by a single ‘End of TeXt’ control character
(<ETX>). The last two bytes before the <ETX> are the
16-bit CCITT CRC.

4.3 Control Characters
Three control characters have special meaning.

Two of them, <STX> and <ETX>, were introduced in
the previous section. The third control character is the
<DLE> (‘Data Link Escape’), described later in this
section. Table 1 provides a summary of the three
control characters.

Table 1 – Control Characters

Control Value Description
<STX> 0x55 Start of TeXt
<ETX> 0x04 End of TeXt
<DLE> 0x05 Data Link Escape

The <DLE> is used to identify a value that could be
interpreted in the data field or CRC as a control
character. Within the data field or CRC, the bootloader
will always accept the byte following a <DLE> as data,
and will always send a <DLE> before bytes 0x55,
0x04, and 0x05 that are part of data or CRC and
should not be interpreted by the receiver as control
characters.

For example, if a byte of value 0x55 is transmitted
as part of the data field, rather than as the <STX>
control character, the <DLE> character is inserted
before the 0x55 byte. In other words, the following
response packet (hex):

55 55 49 04 4C 55 8A 05 9B 92 04

STX STX ETX

will be transmitted as

55 55 49 05 04 4C 05 55 8A 05 05 9B 92 04

STX STX DLE DLE DLE ETX

The process of using <DLE> to escape data bytes
that may be misinterpreted as control characters, is
called “byte stuffing”.

Note: Control characters are not considered data
and are not included in the CRC calcu-
lation.

4.4 CRC
The error detection during communication is

accomplished using a standard 16-bit CCITT CRC
(XModem) algorithm. Table 2 details the CRC para-
meters. Appendix B: CRC Sample Code lists sample
code for the CRC calculation.

Table 2 – CRC Parameters

Width 16 bits
Polynomial 0x1021
Initial Value 0x0000
Final XOR Value 0x0000
Reflection none
Check Value 0x31C3

4 of 12 www.obdsol.com STNBLA

 STN Bootloader

CRC is calculated on the data field prior to byte
stuffing. It is transmitted after the data field, and before
the <ETX> control character.

After a response is received, it must first be
unstuffed. Then the CRC is calculated over the entire
data packet (including the CRC bytes). If the reception
is successful, the CRC calculation result will equal
zero.

4.5 Commands
The data field of each packet transmitted to the

bootloader should contain one command and
(optionally) its associated data. Commands must be
transmitted to the bootloader in the following format:

<command><data length>[<data>]

Table 3 details the command format. Commands
supported by the bootloader are detailed in section 5.0
“Bootloader Commands”.

Table 3 – Command Format

Field Length
(bytes) Description

<command> 1 Bootloader command

<data length> 2 Length of command
payload

[<data>] variable Optional command
payload

Bytes comprising a command do not have to be
sent back-to-back. However, there cannot be more
than 200 milliseconds between any two bytes. If this
timeout occurs, the bootloader will abort receiving the
command, and will revert to looking for the start of the
next command packet.

4.6 Responses
The data field of each packet received from the

bootloader contains one response and its associated
data. The responses are transmitted by the bootloader
in the following format:

<ACK/NACK><command><data length>[<data>]

Table 4 details the response format.

Table 4 – Response Format

Field Length Description

<ACK/NACK> 2 bits
Success/error indication:
01 = ACK
10 = NACK

<command> 6 bits
Command which this
response is
acknowledging

<data length> 1 byte Length of response
payload

[<data>] variable Optional response
payload

4.6.1 ACK Responses
Upon successful execution of each command, the

bootloader responds with an ACK response in the
following format:

<0x40|command><data length>[<data>]

See section 5.0 “Bootloader Commands” for details
on responses to each bootloader command.

4.6.2 NACK Responses
When the bootloader encounters an error while

processing a command, it will respond with a NACK
response. NACK responses have a fixed length of
three bytes (one data byte) and are in the following
format:

<0x80|command><0x01><error code>

Table 5 lists possible error codes.

Table 5 – Error Codes

Error Type
Error
Code
(hex)

Description

01 CRC error Communication
02 Received packet too long
10 Unknown command Command

Validation 11 Invalid command format
30 Sequence error
50 Authentication error
80 Programming error

Firmware
Upload

90 Verification error

4.6.2.1 Communication Errors
NACK responses indicating communication errors

have their command field set to 0x00, because the
integrity of the packet has been compromised or could
not be verified, and the byte received in place of the
command field may not correspond to the command
actually sent by the host. These errors may occur for
any bootloader command. The following two errors
indicate communication problems:

STNBLA www.obdsol.com 5 of 12

STN Bootloader

CRC
The bootloader responds with this error when the

received packet fails the CRC check. To recover from
this error, resend the packet.

Packet Too Long
Whenever the size of the bootloader’s internal

buffer is exceeded, it will stop receiving the command
and wait for the <ETX> character; after it receives the
<ETX>, the bootloader will respond with the Packet
Too Long error.

When properly formatted, none of the commands
with fixed data length will generate this error. However,
the SendChunk command accepts a variable data
length parameter, and may generate this error if the
data length exceeds the maximum chunk size
supported by the bootloader. See StartUpload
command description for more information.

4.6.2.2 Command Validation Errors
After the bootloader receives a packet and verifies

the CRC, it proceeds to validate the command. The
following two errors may be generated for any
command received by the bootloader:

Unknown Command
<command> field of a packet received by the

bootloader does not match any of the supported
commands.

Command Format
This error will be generated by an incorrect

formatting of the <data> field. This can happen if the
data length is incorrect, or the data values are outside
of the supported range.

4.6.2.3 Firmware Upload Errors
Firmware upload errors can occur at any point

during the firmware upload sequence. The two
commands that can generate these errors are
StartUpload and SendChunk.

Sequence
This error is returned when a firmware upload

sequence error is detected. Conditions that can cause
this error are:

• SendChunk command received before
StartUpload command

• Chunk number is out of sequence
• The number of bytes received by the bootloader

exceeds the number specified by the
<image size> field of the StartUpload command

Authentication
This error will be returned if the host software

attempts to upload a firmware image for the wrong
device. It can also be caused by a corrupted firmware
image.

If an attempt is made to upload an invalid firmware
image, most of the time this will be detected within the
first few packets and the old firmware will remain intact.

Programming
This error will be returned if the bootloader

encounters any errors while attempting to program the
uploaded firmware. To attempt a recovery, reset the
device and try uploading the firmware again.

Validation
This error is similar to the Programming error.

However, it has a special meaning for firmware images
of the Validation type. See section 6.0 “Firmware
Update Procedure” for more information.

5.0 Bootloader Commands

5.1 Control Commands
Control commands are used for establishing and

terminating the bootloader session and to aid in error
recovery. All control commands have their data length

field set to 0x0000. Table 6 summarizes control
commands supported by the current version of STN
Bootloader.

Table 6 – Control Commands

Command Name Description
03 Connect Start bootloader session
02 Reset Reset device
01 ResendLast Resend last response

6 of 12 www.obdsol.com STNBLA

 STN Bootloader

Connect
Start bootloader session. After successfully

receiving this command, the bootloader turns off the
startup timer, and the device will remain in bootloader
mode until it is reset (via hardware reset or a Reset
command). The bootloader will not respond to any
other command with either ‘ACK’ or ‘NACK’ unless it
receives the Connect command.

Reset
Terminate bootloader session, and reset the device.

Send Reset after successfully uploading the firmware,
to restart the device in normal mode.

ResendLast
Resend last response. This command can be used

to recover from a communication error during reception
of a bootloader response (e.g., UART framing error or
a failed CRC check).

5.2 Device Information Commands
Table 7 summarizes device information commands

supported by the current version of STN Bootloader.
These commands can be used in bootloader mode to

request information about the device. All device
information commands must have their data length
field set to 0x0000.

Table 7 – Device Information Commands

Command Name Description
06 GetVersion Get bootloader version
07 GetDevID Get device ID
08 GetHWRev Get hardware revision
0A GetSerialNumber Get serial number
0B GetDeviceName Get Device Name
0F GetFWStatus Get firmware status (valid/invalid)

GetVersion

Get bootloader version. Returns bootloader version
in the following format (data length = 2):

<major><minor>

GetDevID
Get device ID. Returns device ID as a big-endian

16-bit integer (data length = 2). See Appendix C:
Device IDs for the list of possible device IDs.

GetHWRev
Get device hardware revision. Returns device

hardware revision in the following format (data
length = 2):

<major><minor>

GetSerialNumber
Get device serial number. Returns serial number as

8 ASCII characters (data length = 8).

GetDeviceName
Get device name. Returns device name as an

ASCII string. Data length is fixed at 32 bytes. For
strings shorter than 32 bytes, the remaining data bytes
will be padded with 0s.

GetFWStatus
Get firmware status. Reports whether valid

application firmware is present (data length = 1). If
valid firmware is not present, returns 0; any other value
indicates valid firmware.

Use this command to verify that the firmware was
properly programmed after upload.

5.3 Firmware Upload Commands

Table 8 summarizes firmware upload commands
supported by the current version of STN Bootloader,

which are used to upload each firmware image as
specified by the firmware file.

STNBLA www.obdsol.com 7 of 12

STN Bootloader

Table 8 – Firmware Upload Commands

Command Name Description
30 StartUpload Start firmware image upload
31 SendChunk Send the next firmware image chunk

StartUpload

Start firmware image upload. Every firmware image
upload must be preceded by a StartUpload command.
The StartUpload command packet has the following
format:

<0x30><0x04>[<image size><mode>]

Table 9 details the data field format of the
StartUpload command.

Table 9 – StartUpload Command Format

Field Length
(bytes) Description

<image size> 3 Firmware image size

<mode> 1 Mode. Must be set to
0x01

The response to StartUpload command is a big-
endian 16-bit integer specifying the maximum chunk
size that can be accepted by the bootloader (data
length = 2).

SendChunk
Send the next firmware image chunk. Firmware

chunk length must be a multiple of 16 bytes, and

cannot exceed the maximum chunk size returned by
the StartUpload command. The chunk size can be
varied to achieve the optimum balance between
firmware upload speed, progress granularity, and the
speed of error recovery.

The SendChunk command packet has the following
format:

<0x31><chunk_len+2>[<chunk num><chunk>]

Table 10 details SendChunk command data field
format.

Table 10 – SendChunk Command Format

Field Length
(bytes) Description

<chunk num> 2 Chunk number

<chunk> variable Firmware image
chunk data

Chunk number is a sequential number assigned to
each chunk. It must be set to 0 for the first chunk and
then incremented by one for each subsequent chunk.

The response to SendChunk command contains
the 16-bit chunk number (data length = 2).

6.0 Firmware Update Procedure
Basic firmware update steps are as follows:

1. Load firmware file header into memory
2. Start bootloader session (Connect)
3. Verify bootloader version (GetVersion).

Proceed only if the major version is 2.
4. Upload each firmware image (see

Appendix A: Firmware File Format for
details):

a. Send StartUpload command

b. Send firmware image using
SendChunk commands until all
bytes of the firmware image have
been transmitted

5. Send GetFWStatus command to verify that
the application firmware was successfully
uploaded

8 of 12 www.obdsol.com STNBLA

 STN Bootloader

Appendix A: Firmware File Format
Firmware images to be used with STN Bootloader

are released as binary files with a .bin extension. The
STN firmware file format is detailed in this section.

The current file version is 5. If any other file version
is detected, you should abort the upload, because the

firmware will not be compatible with the file layout
described in this document. Table 11 describes STN
firmware file structure. All multi-byte values are big-
endian.

Table 11 – Firmware File Structure

 Field Size (bytes) Description

Signature 6 File signature (ASCII STNFWv)

Version 2 File version (ASCII 05)
Device ID Count 1 Size of device IDs array

Device IDs Array [Dev ID Count] * 2 Device IDs of compatible devices that can
be programmed with this firmware

FW Image Descriptors Count 1 Size of firmware descriptors array (see
Table 12)

Fi
le

 H
ea

de
r

FW Image Descriptors Array [FW Image Desc Count] * 12 Optional firmware descriptors array
 Firmware images, specified by firmware

image descriptors FW Images Variable

Table 12 – Firmware Image Descriptor Format

Field Length (bytes) Description
Image Type 1 Firmware image type (see Table 13)
Reserved 1

Next firmware image to upload. 0xFF means there are no more images to
upload. Next FW Index 1

Error FW Index 1 Firmware to upload on error. Used only for images of ‘Validation’ type.
Image Offset 4 Absolute file offset to beginning of firmware image
Image Size 4 Size of firmware image in bytes

Table 13 – Firmware Image Types

FW Image Type Value (hex) Description

Normal 00 Go to [Next FW Index] on success, handle all errors normally (ignore
[Error FW Index])
Go to [Next FW Index] on success; if connection is lost, reconnect,
then continue with the [Next FW Index]; if device comm error occurs,
send ResetDevice command, reconnect, then continue with the [Next
FW Index]; handle all other errors normally (ignore [Error FW
Index])

Normal, Tolerate Errors 01

Validation 10 Go to [Next FW Index] on success, go to [Error FW Index] on
Validation error, handle all other errors normally

STNBLA www.obdsol.com 9 of 12

STN Bootloader

Appendix B: CRC Sample Code

Table-based Algorithm

unsigned short crcTable[256] =
{
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

unsigned short UpdateCcittCrc(unsigned short crc, unsigned char data)
{
 return (crc << 8) ^ crcTable[(crc >> 8) ^ data];
}

unsigned short CalculateCcittCrc(unsigned char* data, int len)
{
 unsigned short crc = 0;

 while (len-- > 0)
 crc = UpdateCcittCrc(crc, *data++);

 return crc;
}

10 of 12 www.obdsol.com STNBLA

 STN Bootloader

Efficient Bytewise Algorithm

unsigned short UpdateCcittCrc(unsigned short crc, unsigned char data)
{
 unsigned short x;

 x = ((crc >> 8) ^ data) & 0xFF;
 x ^= x >> 4;
 crc = (crc << 8) ^ (x << 12) ^ (x << 5) ^ x;

 return crc;
}

unsigned short CalculateCcittCrc(unsigned char* data, int len)
{
 unsigned short crc = 0;

 while (len-- > 0)
 crc = UpdateCcittCrc(crc, *data++);

 return crc;
}

Appendix C: Device IDs
Table 14 lists device IDs for OBD Solutions devices currently in production.

Table 14 – Device IDs

Device ID (hex) Device Name
1000 OBDLink CI
1100 OBDLink
1101 OBDLink S
1110 STN1110
1120 microOBD 200
1130 OBDLink SX
1200 STSP200 – ECUsim CAN PIM
1300 STSP300 – ECUsim 5100 PIM
1310 STS2000 – ECUsim 2000

STNBLA www.obdsol.com 11 of 12

STN Bootloader

Appendix D: Revision History

Revision A (January 25, 2011)

Initial release of this document.

Appendix E: Contact Information

OBD Solutions
1819 W Rose Garden Ln Ste 3
Phoenix, AZ 85027-2723
United States

Phone: +1 623.434.5506
Fax: +1 623.321.1628
Email: sales@obdsol.com
Web: www.obdsol.com

12 of 12 www.obdsol.com STNBLA

mailto:sales@obdsol.com
http://www.obdsol.com/

	Table of Contents
	1.0 Introduction
	2.0 Features
	3.0 Basic Operation
	4.0 Communication Protocol
	4.1 UART Settings
	4.2 Packet Format
	4.3 Control Characters
	4.4 CRC
	4.5 Commands
	4.6 Responses
	4.6.1 ACK Responses
	4.6.2 NACK Responses
	4.6.2.1 Communication Errors
	4.6.2.2 Command Validation Errors
	4.6.2.3 Firmware Upload Errors

	5.0 Bootloader Commands
	5.1 Control Commands
	5.2 Device Information Commands
	5.3 Firmware Upload Commands

	6.0 Firmware Update Procedure
	Appendix A: Firmware File Format
	Appendix B: CRC Sample Code
	Appendix C: Device IDs
	Appendix D: Revision History
	Appendix E: Contact Information

