MASTERs 2014 LAB Manual for 18060 IVN Interfacing with Vehicle Networks: Best Practices

Table of Contents

- Lab 1 Instructions2Lab 2 Instructions10Lab 3 Instructions12
- Reference Material 12

LAB 1: Access OBD Data

Purpose:

Become familiar with the development tools: OBD development board and OBD simulator, and access vehicle data: vehicle speed, RPM, DTCs, and VIN.

Overview

In this lab, we will set up the OBD development board and the OBD Simulator, connect to them from the PC using a terminal emulator, and request and interpret vehicle parameters.

OBD Simulator

As the name suggests, the purpose of this device is to simulate the on-board diagnostic system of a vehicle. The ECUsim 2000 is capable of simulating all legislated OBD protocols, and supports a wide range of diagnostic services and parameters.

The unit, shown in Figure 1, has five knobs assigned to common PIDs, including vehicle speed and engine speed (RPM). The "Fault" button sets stored, pending, and permanent DTCs. The USB port can be used to monitor OBD traffic, and configure the simulator.

OBD Development Board

The OBD development board (Figure 2) is a fully functioning OBD to USB interface. It consists of the "interconnect" board and three modules:

- **OBD Interpreter Module:** a PIC24H-based intelligent OBD controller
- OBD Transceiver Module: provides level-shifting to/from OBD/TTL
- **Power Module:** provides load dump/reverse polarity protection, filtering out of spikes and dips, switches off peripherals in sleep, regulates voltage down to 5V and 3.3V

The board can be powered either via the power jack, or the OBD port. It features a number of jumpers and tap points, to facilitate experimentation during development and troubleshooting.

Figure 1: OBD Simulator

Figure 2: OBD Development Board

- 2 OBD transceiver module
- 3 Power module

- 5 Power jack (12VDC)
- 6 OBD port

Figure 3: Connection Diagram

Step 1: Set up OBD simulator and Development Board

- 1. Plug the 12V end of the **power supply** into the power jack of the **OBD simulator**. *The "Power" LED on the OBD Simulator should light up.*
- 2. Connect the **development board** to the **OBD simulator**, using the OBD to DB15 cable. *The "Power" LED on the development board should light up.*
- 3. Launch **TeraTerm**, select the COM port, and set it up for 115200 kbps. This will be your <u>"OBD Simulator"</u> terminal.
- 4. Connect the **development board** to the **PC** using the USB cable.
- 5. Launch a **2nd TeraTerm** window, select the new COM port, and set it up for 9600 kbps. This will be your <u>"Development Board"</u> terminal. *Hit 'Enter' to test communication.*
- 6. Connect the **OBD simulator** to the **PC** using the 2nd USB cable.

Step 2: Reque	est and Interpret OBD D	Data			
In this step, we OBD protocol,	will set both the simulat send OBD requests, and	or and the o d receive an	development board to the same d interpret responses.		
Type the follow	Type the following commands in their respective TeraTerm windows:				
OBD Simulato	r:	Develop	oment board:		
SI SP 1 SPI	print device version protocol = J1850 PWM print protocol	STP 11 STPRS ATH1	protocol = J1850 PWM print protocol turn headers on		
M COM25-115200haud - ECU					
<u>File Edit Setup Control</u>	<u>W</u> indow <u>H</u> elp		Eile Edit Setup Control Window Help		
<u>SI</u>			STP 11		
Device: STS Firmware: IFF	S2000 31 µ3 1 6		0К		
Serial #: 131	[010005341		STPRS		
IC ID/Rev: 0x0	0 0100, 0×067F, 0×3003		SHE J1850 PWM		
Init Date: 0x4	4F609893		>ATH1		
>SP 1					
UK			>		
>SPI OPD_Protocol					
UDD PF010C01	J1030 FWM	-	•		
Now, you're rea "Development	ady to request OBD data board" window:	a. Enter the	following commands in the		
		COM69:9600b	aud - Development Board VT		
01 00 s	upported PIDs	<u>File Edit Setu</u>	p C <u>o</u> ntrol <u>W</u> indow <u>H</u> elp		
	enicle speea	>01 00 11 68 10 1	1 00 RE 1R 30 13 80		
	-m	41 6B 18 4	1 00 88 18 00 10 3F		
How many	ECUs responded to	41 6B 28 4	1 00 80 08 00 10 6C		
	ct2	. 01 00			
What are th	sir oddrogoog?	>01 0U 41 6R 10 7	1 00 00 86		
– vvnacare in		41 6B 18 4	1 0D 00 1A		
		41 6B 28 4	1 0D 00 75		
Turn the "SPD"	and "RPM" knobs,				
and repeat the	requests (you can hit	>01 0C			
Enter to repea	at the last command).	41 6B 10 4	$1 \ 0C \ 00 \ 00 \ DC$		
		41 00 10 4			
 Which byte. 	s are changing, in each	,			
case?					
 What are th 	e minimum and maximu	ım values (ii	n hex)?		
Turn the knobs	roughly half a turn, and	record the	hex values for		
			N 4.		
Speed:		RP	/IVI		

Responses to the 0100 request give you three important pieces of information:

- How many ECUs on the network support legislated OBDII PIDs
- Address of each ECU
- Which PIDs are supported by each ECU

ECU count is equal to the number of responses you get to 0100. Address of the ECU is encoded in the header. Supported PIDs are bit-encoded in the data bytes, like this (from SAE J1979, Digital Annex):

Supported	Scaling/Bit						
PID/OBDMID/		Number of Data Bytes = 4					
TID/INFOTYPE	Data A - D or B - E: Bit Evaluation						
(Hex)	PID/OBDMID/TID/INFOTYPE Supported (Hex)						
00	Data A bit 7	01					
	Data A bit 6	02	0 = not supported				
	:	:	1 = supported				
	Data D bit 0	20					

In our example, there were three responses, and looking at the third byte, we know the ECU addresses are 10, 18, and 28.

To learn how to determine which PIDs are supported by an ECU, let's look at the first response from our example:

41 6B 10 41 00 <u>BE 1B 30 13</u> 80

The first three bytes are the header, bytes 4 and 5 mean "this is a response to 01 00", the next four bytes are the data, and the last byte is the CRC (checkbyte).

Let's convert the hex bytes to binary, and count the bits to see which PIDs are supported:

PID	01	02	03	04	05	06	07	08
0 x BE =	1	0	1	1	1	1	1	0
-	_	-	-	-	-	-	-	
PID	09	0A	0B	0C	0D	0E	0F	10
0x1B =	0	0	0	1	1	0	1	1
PID	11	12	13	14	15	16	17	18
0x30 =	0	0	1	1	0	0	0	0
PID	19	1A	1B	1C	1D	1E	1F	20
0x13 =	0	0	0	1	0	0	1	1

Note that the last bit indicates that there are more supported PIDs, in the next range (PIDs 20-40). Send the 0120 request and repeat the process for the next 32 PIDs. If the last bit (PID 40) is supported, send 0140, and so on.

Use the following PID definition to decode the vehicle speed value you recorded earlier:

			-			
PID	Description	Data	Min.	Max.	O a a line (D)	External Test Equipment
(nex)	Vehicle Speed Sensor	Byte	Value	Value 255 km/b	Scaling/Bit	SI (Metric) / English Display
	Venicie Speed Sensor		U KIII/II	200 KIII/II	per bit	
	VSS shall display vehicle road speed. Vehicle speed may be derived from a vehicle speed sensor,					
	calculated by the ECU using of	other sp	eed sensor	s, or obtain	ed from the v	ehicle serial data communication
	bus.					
In oth	er words, to get vehicle	e spee	d (in km/	/h), simpl	ly convert	the hex value to decimal.
For e	xample:				•	
	•					
	Raw coolant temperat	ture va	alue (hex	:): 6E		
	0x6E = 110					
	110 - 40 = 70					
	Coolant temperature i	s 70°(С			
Engir	ne speed (RPM) definition	on:				
PID (bex)	Description	Data	Min. Value	Max. Value	Scaling/Bit	External Test Equipment
	Engine RPM	A, B	0 min-1	16383.75	1/4 rpm	RPM: xxxxx min ⁻¹
				min-1	per bit	
	Engine RPM shall display rev	olutions	per minute	of the engi	ne crankshaft	t.
In oth to get	er words: convert the 1 t RPM. For example:	6-bit I	nex value	e you rec	orded to d	ecimal, and divide by 4
	Raw RPM value (hex) 0x0EC4 = 3780): 0EC)	4			
	3780 ÷ 4 = 94	5				
	RPM is 945 min⁻¹					
Let's	now request status of t	he Mll	L, DTC c	ount, and	d DTCs:	
				COM	i9:9600haud - Devel	onment Board VT
	01 01 MIL status			<u>F</u> ile <u>E</u> di	t <u>S</u> etup C <u>o</u> ntrol	<u>W</u> indow <u>H</u> elp
	03 Stored DICS			>01 0	1	
	07 penuting DTCS 0Δ nermanent DTCs			41 6B	10 41 01 0	00 07 EF 80 AF
	on permanent bres			41 6B	28 41 01 0	00 00 00 00 24
MIL s	tatus and DTC count a	re enc	oded in	N03		
the fi	rst data byte. In our exa	mple.	it's 00.	NO DA	TA	
mean	ing MIL is off and there	are n	o DTCs.	N07		
				NO DA	TA	
Reau	ests for stored. pending	a, and		\ <u>00</u>		
perm	anent DTCs return "NO	DAT	۹" —	NO DA	TA	
ECU	Us have no DTCs to report.					

Press the "Fault" button on ECUsim, and repeat the requests:

🚾 COM69:9600baud - Development Board VT

<u>File Edit Setup Control Window Help</u>

 6B
 10
 41
 01
 86
 07
 EF
 80
 F3
 68
 18
 41
 01
 81
 00
 00
 00
 8C
 63
 64
 18
 41
 01
 81
 00
 00
 00
 8C
 63
 63
 28
 41
 01
 80
 00
 00
 00
 C7

 6B
 10
 43
 01
 00
 02
 00
 03
 00

 6B
 10
 43
 43
 00
 82
 00
 C1
 00

 6B
 10
 43
 43
 00
 82
 00
 C1
 00

 6B
 18
 43
 01
 01
 00
 00
 00

6B 10 47 01 07 02 07 03 07 F8 6B 10 47 43 07 00 00 00 00 0E

>0101

41 41 41

>03 41

>07

_ 🗆 🗙

01 01 MIL status 03 stored DTCs 07 pending DTCs 0A permanent DTCs

The first byte of the first response to 0101 is 0x86. The first bit is now 1, meaning the MIL is on. The DTC count is 6.

The next two responses are 81 and 80, meaning that ECUs number 18 and 28 have 1 and 0 DTCs, respectively.

Let's now dissect the response to the request for stored DTCs (03):

 41
 6B
 10
 43
 01
 00
 02
 00
 03
 00
 43

 41
 6B
 10
 43
 43
 00
 82
 00
 C1
 00
 11

 41
 6B
 18
 43
 01
 01
 00
 00
 00
 00
 18

ECU #10 responded with two messages, containing 6 DTCs. ECU #18 responded with a single message, containing one DTC.

The SAE J2012 diagram shows how the DTCs are encoded. Notice how the last three characters of a DTC *do not need to be translated from ASCII*. Therefore, the only part that requires any effort, is decoding the letter-number combination (first nibble). Here's a handy chart to help us with this task:

	0	1	2	3
Р	0	1	2	3
С	4	5	6	7
В	8	9	А	В
U	С	D	Е	F

This is how we would decode the first, fourth, and sixth DTCs from our example:

01 00 = P0100 43 00 = C0300 C1 00 = U0100

Try decoding the rest of the DTCs, on your own.

As our final exercise of this lab, we will request and decode the VIN (0902). Besides the fields you are familiar with, the VIN response frames add a sequence number field. Also, the first frame starts with three fill bytes.

Send 09 02 to the ECUsim, and you will get the following response:

......

 41
 6B
 10
 49
 02
 01
 00
 00
 <u>31</u>
 2F

 41
 6B
 10
 49
 02
 02
 <u>47</u>
 <u>31</u>
 <u>4A</u>
 <u>43</u>
 1D

 41
 6B
 10
 49
 02
 03
 <u>35</u>
 <u>34</u>
 <u>34</u>
 <u>34</u>
 EC

 41
 6B
 10
 49
 02
 04
 <u>52</u>
 <u>37</u>
 <u>32</u>
 <u>35</u>
 E9

 41
 6B
 10
 49
 02
 05
 <u>32</u>
 <u>33</u>
 <u>36</u>
 <u>37</u>
 4C

Use the ASCII code chart, to decode the VIN:

						P	SCL	L CO	de Cl	narτ						
	0	1	2	I 3	4	ı 5	6	7	8	9	A	Β	C	D	E	I F I
0	NUL	SOH	STX	ETX	E0T	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2		!		#	\$	%	&		()	*	+	,	-	•	/
3	0	1	2	3	4	5	6	7	8	9	:	;	۷	=	>	?
4	0	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5	Р	Q	R	S	Т	U	V	W	X	Y	Z]	\]	^	-
6	`	а	b	с	d	е	f	g	h	i	j	k	ι	m	n	0
7	р	q	r	s	t	u	v	w	х	У	z	{		}	~	DEL

VIN:

LAB 2: Sleep/Wakeup

Purpose:

To explore the various sleep/wakeup mechanisms.

Overview

In this lab, we will show the steps required to configure and activate sleep and wakeup triggers.

Automatic Sleep and Wakeup on UART (In-) activity

We will enter the following commands in the "Development Board" TeraTerm window:

STSLCS	print sleep summary
STSLUIT 10	sleep after 10 seconds of inactivity
STSLU on, on	enable both sleep and wakeup triggers
ATZ	reboot to activate
STSLCS	check new trigger settings
[wait 10 s]	
[hit spacebar]	
STSLU off, on	disable sleep on UART in- activity

Watch the LEDs on the Power Module, as you wait for the STN1170 to go to sleep. When they turn off, you can hit the spacebar (or any key) to wake up the device. When you do, the STN1170 will wake up and print the welcome prompt.

Type the last command, to disable the "sleep on UART inactivity" trigger.

j.		
	🙋 COM69:9600baud - Development Board VT 📃 🗖	x
	<u>File E</u> dit <u>S</u> etup C <u>o</u> ntrol <u>W</u> indow <u>H</u> elp	
	>STSLCS CTRL MODE: NATIVE PWR_CTRL: LOW PWR = LOW UART SLEEP: OFF, 1200 s UART WAKE: ON, 0-30000 us EXT INPUT: LOW = SLEEP EXT SLEEP: OFF, LOW FOR 3000 ms EXT WAKE: ON, HIGH FOR 2000 ms VL SLEEP: OFF, <13.00V FOR 600 s VL SLEEP: OFF, <13.20V FOR 1 s VCHG WAKE: OFF, 0.20V IN 1000 ms	•
	>STSLUIT 10 OK	
	>STSLU on, on OK	
	>ATZ	
	ELM327 v1.3a	
	>STSLCS CTRL MODE: NATIVE PWR_CTRL: LOW PWR = LOW UART SLEEP: ON, 10 s UART WAKE: ON, 0-30000 us EXT INPUT: LOW = SLEEP EXT SLEEP: OFF, LOW FOR 3000 ms EXT WAKE: ON, HIGH FOR 2000 ms VL SLEEP: OFF, <13.00V FOR 600 s VL WAKE: OFF, >13.20V FOR 1 s VCHG WAKE: OFF, 0.20V IN 1000 ms	
	>	
	ELM327 v1.3a	
	>STSLU off, on OK	
_	\rangle	-

SLEEP Command and Wake-up on Voltage Change

The "wake up on voltage change" is perhaps one of the most useful trigger wake-up triggers. The electrical system of the vehicle produces a steady voltage, when the vehicle is at rest. However, there are many things that can produce a measurable dip — the driver pushes the "unlock" button on the car remote, opens a door, or cranks the engine — that can be used to wake up the device.

We will use a resistor to simulate a dip, to bring the device out of the sleep state.

Here is the complete procedure for this portion of the lab:

- 1. Issue the STVR command to read the current voltage
- 2. Connect the 100k resistor between the ANALOG_IN and GND pins of the STN1170 module

- 3. Read the new voltage (STVR). It should be roughly 1 volt less than what you measured in step #1
- 4. Enter the following commands:

STSLVG on	wake on voltage change
ATZ	reboot to activate
STSLCS	confirm the trigger is active
STSLEEP	put device to sleep

5. Briefly connect the 100k resistor between the ANALOG_IN and GND pins, and observe the STN1170 wake up and print the welcome prompt.

LAB 3: OBD Development and Testing

Purpose:

To gain experience configuring the OBD simulator to aid development and testing.

Overview In this lab, you will cro fault set.	eate and configure a virtual ECU, add a PID, and create a custom
Creating a basic EC	U
Enter the following co	ommands in the "OBD Simulator" TeraTerm window:
SP 1	set the protocol to PWM
EDA	delete all existing (default) ECUs
EA 3	create ECU #3
EN 3, "My ECU"	specify ECU name
EAP 3, 10	assign ECU physical address \$10
EAF 3, 6A	assign ECU functional address \$6A
EP 3, 1	set ECU's protocol preset to PWM
PA 3, 0C, 0FA0	add PID (RPM = 1000)
E 3, on	turn on the ECU
Send the EL ("list EC	Us") command to verify that the ECU has been created:
COM35:: File Edit	115200baud - ECUsim 2000 VT
>EP 3,	
OK	
>РА Э, ОК	ØC, FFFF
>E 3, c 0K	on
>EL ECUs: 3 My EC	CU 10,6A

Now, let's add a simple fault set: DSA 3, 1, U1234 report a stored DTC (U1234) after a fault event PAUDC 3, on enable automatic updates of stored DTC count PAUMS 3, on enable automatic updates of MIL status All that remains, is to test the newly created setup, by entering the following commands in the "Development Board" TeraTerm window: _ 🗆 🗙 COM69:9600baud - Development Board VT 01 01 MIL status & DTC count <u>File Edit Setup Control Window H</u>elp 01 OC RPM value >01 01 41 6B 10 41 01 81 00 00 00 5E 03 stored DTCs >01 0C 41 6B 10 41 0C FF FF 59 From the responses, you can see that the MIL is set, there is one stored DTC (U1234), 41 6B 10 43 D2 34 00 00 00 00 04 and RPM is at its maximum value. Besides obvious convenience, an OBD simulator gives the developer the ability to set PIDs to arbitrary values outside the "usual" value range, or even have the virtual ECU send an invalid response (e.g., RPM) reported as a 3-byte value). Both are useful for stress-testing OBD software in the lab.

Reference Material

- SAE Standards (sae.org): J1979, J1850, J2012, J1939
- ISO Standards (iso.org): ISO 9141, ISO 14230, ISO 15765
- OBD Software Development Tutorials
 http://www.obdsol.com/articles/
- ECUsim 2000 User Guide
 http://www.scantool.net/scantool/downloads/101/ecusim_2000-ug.pdf
- ECUsim 2000/5100 Programming Manual
 http://www.scantool.net/static/documentation/ecusim/ecusim-pm.pdf
- STN1100 Family Reference and Programming Manual
 http://www.scantool.net/scantool/downloads/98/stn1100-frpm.pdf