
LAB Manual for 18060 IVN

Page Copyright © 2015 OBD Solutions

Table of Contents

Lab 1 Instructions 2
Lab 2 Instructions 10
Lab 3 Instructions 12

Reference Material 12

MASTERs 2014
LAB Manual for 18060 IVN
Interfacing with Vehicle Networks: Best
Practices

LAB Manual for 18060 IVN

Page 2 Copyright © 2015 OBD Solutions

LAB 1:
Access OBD Data

Purpose:

Become familiar with the development tools: OBD development board and OBD simu-
lator, and access vehicle data: vehicle speed, RPM, DTCs, and VIN.

Overview

In this lab, we will set up the OBD development board and the OBD Simulator, connect
to them from the PC using a terminal emulator, and request and interpret vehicle pa-
rameters.

OBD Simulator

As the name suggests, the purpose of this device is to simulate the on-board diagnos-
tic system of a vehicle. The ECUsim 2000 is capable of simulating all legislated OBD
protocols, and supports a wide range of diagnostic services and parameters.

The unit, shown in Figure 1, has five knobs assigned to common PIDs, including vehi-
cle speed and engine speed (RPM). The “Fault” button sets stored, pending, and per-
manent DTCs. The USB port can be used to monitor OBD traffic, and configure the
simulator.

OBD Development Board

The OBD development board (Figure 2) is a fully functioning OBD to USB interface. It
consists of the “interconnect” board and three modules:

 OBD Interpreter Module: a PIC24H-based intelligent OBD controller
 OBD Transceiver Module: provides level-shifting to/from OBD/TTL
 Power Module: provides load dump/reverse polarity protection, filter-

ing out of spikes and dips, switches off peripherals in sleep, regulates volt-
age down to 5V and 3.3V

The board can be powered either via the power jack, or the OBD port. It features a
number of jumpers and tap points, to facilitate experimentation during development
and troubleshooting.

LAB Manual for 18060 IVN

Page 3 Copyright © 2015 OBD Solutions

Figure 1: OBD Simulator

1 - “Power” LED
2 - “Link” LED
3 - “Malfunction Indicator Light” LED
4 - PID Control Knobs
5 - “Fault” button

6 - Configuration DIP switch
7 - OBD port
8 - USB port
9 - Power jack (12VDC)

Figure 2: OBD Development Board

1 - OBD interpreter module (STN1170)
2 - OBD transceiver module
3 - Power module

4 - “Power” LED
5 - Power jack (12VDC)
6 - OBD port

LAB Manual for 18060 IVN

Page 4 Copyright © 2015 OBD Solutions

Step 1: Set up OBD simulator and Development Board

1. Plug the 12V end of the power supply into the power jack of the OBD simulator.

The “Power” LED on the OBD Simulator should light up.
2. Connect the development board to the OBD simulator, using the OBD to DB15 ca-

ble. The “Power” LED on the development board should light up.
3. Launch TeraTerm, select the COM port, and set it up for 115200 kbps. This will be

your “OBD Simulator” terminal.
4. Connect the development board to the PC using the USB cable.
5. Launch a 2nd TeraTerm window, select the new COM port, and set it up for 9600

kbps. This will be your “Development Board” terminal. Hit ‘Enter’ to test communi-
cation.

6. Connect the OBD simulator to the PC using the 2nd USB cable.

Figure 3: Connection Diagram

LAB Manual for 18060 IVN

Page 5 Copyright © 2015 OBD Solutions

Step 2: Request and Interpret OBD Data

In this step, we will set both the simulator and the development board to the same
OBD protocol, send OBD requests, and receive and interpret responses.

Type the following commands in their respective TeraTerm windows:

Now, you’re ready to request OBD data. Enter the following commands in the
“Development board” window:

01 00 supported PIDs
01 0D vehicle speed
01 0C RPM

 How many ECUs responded to

each request?
 What are their addresses?

Turn the “SPD” and “RPM” knobs,
and repeat the requests (you can hit
’Enter’ to repeat the last command).

 Which bytes are changing, in each

case?
 What are the minimum and maximum values (in hex)?

Turn the knobs roughly half a turn, and record the hex values for

 Speed: _____________ RPM: ________________

Development board: OBD Simulator:

SI
SP 1
SPI

print device version
protocol = J1850 PWM
print protocol

STP 11
STPRS
ATH1

protocol = J1850 PWM
print protocol
turn headers on

LAB Manual for 18060 IVN

Page 6 Copyright © 2015 OBD Solutions

Responses to the 0100 request give you three important pieces of information:

 How many ECUs on the network support legislated OBDII PIDs
 Address of each ECU
 Which PIDs are supported by each ECU

ECU count is equal to the number of responses you get to 0100. Address of the ECU
is encoded in the header. Supported PIDs are bit-encoded in the data bytes, like this
(from SAE J1979, Digital Annex):

In our example, there were three responses, and looking at the third byte, we know the
ECU addresses are 10, 18, and 28.

To learn how to determine which PIDs are supported by an ECU, let’s look at the first
response from our example:

41 6B 10 41 00 BE 1B 30 13 80

The first three bytes are the header, bytes 4 and 5 mean “this is a response to 01 00”,
the next four bytes are the data, and the last byte is the CRC (checkbyte).

Let’s convert the hex bytes to binary, and count the bits to see which PIDs are
supported:

Note that the last bit indicates that there are more supported PIDs, in the next range
(PIDs 20-40). Send the 0120 request and repeat the process for the next 32 PIDs. If
the last bit (PID 40) is supported, send 0140, and so on.

01 02 03 04 05 06 07 08 PID

1 0 1 1 1 1 1 0 0xBE =

09 0A 0B 0C 0D 0E 0F 10 PID

0 0 0 1 1 0 1 1 0x1B =

11 12 13 14 15 16 17 18 PID

0 0 1 1 0 0 0 0 0x30 =

19 1A 1B 1C 1D 1E 1F 20 PID

0 0 0 1 0 0 1 1 0x13 =

LAB Manual for 18060 IVN

Page 7 Copyright © 2015 OBD Solutions

Use the following PID definition to decode the vehicle speed value you recorded
earlier:

In other words, to get vehicle speed (in km/h), simply convert the hex value to decimal.
For example:

Raw coolant temperature value (hex): 6E
0x6E = 110
110 - 40 = 70

Coolant temperature is 70°C

Engine speed (RPM) definition:

In other words: convert the 16-bit hex value you recorded to decimal, and divide by 4
to get RPM. For example:

Raw RPM value (hex): 0EC4
0x0EC4 = 3780
3780 ÷ 4 = 945

RPM is 945 min-1

Let’s now request status of the MIL, DTC count, and DTCs:

01 01 MIL status
03 stored DTCs
07 pending DTCs
0A permanent DTCs

MIL status and DTC count are encoded in
the first data byte. In our example, it’s 00,
meaning MIL is off and there are no DTCs.

Requests for stored, pending, and
permanent DTCs return “NO DATA” —
ECUs have no DTCs to report.

LAB Manual for 18060 IVN

Page 8 Copyright © 2015 OBD Solutions

Press the “Fault” button on ECUsim, and repeat the requests:

01 01 MIL status
03 stored DTCs
07 pending DTCs
0A permanent DTCs

The first byte of the first response to 0101 is
0x86. The first bit is now 1, meaning the MIL
is on. The DTC count is 6.

The next two responses are 81 and 80,
meaning that ECUs number 18 and 28 have
1 and 0 DTCs, respectively.

Let’s now dissect the response to the
request for stored DTCs (03):

41 6B 10 43 01 00 02 00 03 00 43
41 6B 10 43 43 00 82 00 C1 00 11
41 6B 18 43 01 01 00 00 00 00 18

ECU #10 responded with two messages, containing 6 DTCs.
ECU #18 responded with a single message, containing one DTC.

LAB Manual for 18060 IVN

Page 9 Copyright © 2015 OBD Solutions

The SAE J2012 diagram shows how the DTCs are encoded. Notice how the last three
characters of a DTC do not need to be translated from ASCII. Therefore, the only part
that requires any effort, is decoding the letter-number combination (first nibble). Here’s
a handy chart to help us with this task:

This is how we would decode the first, fourth, and
sixth DTCs from our example:

01 00 = P0100
43 00 = C0300
C1 00 = U0100

Try decoding the rest of the DTCs, on your own.

As our final exercise of this lab, we will request and decode the VIN (0902). Besides
the fields you are familiar with, the VIN response frames add a sequence number field.
Also, the first frame starts with three fill bytes.

Send 09 02 to the ECUsim, and you will get the following response:

41 6B 10 49 02 01 00 00 00 31 2F
41 6B 10 49 02 02 47 31 4A 43 1D
41 6B 10 49 02 03 35 34 34 34 EC
41 6B 10 49 02 04 52 37 32 35 E9
41 6B 10 49 02 05 32 33 36 37 4C

Use the ASCII code chart, to decode the VIN:

VIN: __

 0 1 2 3

P 0 1 2 3

C 4 5 6 7

B 8 9 A B

U C D E F

LAB Manual for 18060 IVN

Page 10 Copyright © 2015 OBD Solutions

LAB 2:
Sleep/Wakeup

Purpose:

To explore the various sleep/wakeup mechanisms.

Overview
In this lab, we will show the steps required to configure and activate sleep and wakeup
triggers.

Automatic Sleep and Wakeup on UART (In-)
activity

We will enter the following commands in the
“Development Board” TeraTerm window:

Watch the LEDs on the Power Module, as you
wait for the STN1170 to go to sleep. When
they turn off, you can hit the spacebar (or any
key) to wake up the device. When you do, the
STN1170 will wake up and print the welcome
prompt.

Type the last command, to disable the “sleep
on UART inactivity” trigger.

STSLCS print sleep summary

STSLUIT 10 sleep after 10 seconds of
inactivity

STSLU on, on enable both sleep and
wakeup triggers

ATZ reboot to activate

STSLCS check new trigger settings

[wait 10 s]

[hit spacebar]

STSLU off, on disable sleep on UART in-
activity

LAB Manual for 18060 IVN

Page 11 Copyright © 2015 OBD Solutions

SLEEP Command and Wake-up on Voltage Change

The “wake up on voltage change” is perhaps one of the most useful trigger wake-up
triggers. The electrical system of the vehicle produces a steady voltage, when the
vehicle is at rest. However, there are many things that can produce a measurable dip
— the driver pushes the “unlock” button on the car remote, opens a door, or cranks the
engine — that can be used to wake up the device.

We will use a resistor to simulate a dip, to bring the device out of the sleep state.

Here is the complete procedure for this portion of the lab:

1. Issue the STVR command to read the current voltage
2. Connect the 100k resistor between the ANALOG_IN and GND pins of the

STN1170 module

3. Read the new voltage (STVR). It should be roughly 1 volt less than what you
measured in step #1

4. Enter the following commands:

5. Briefly connect the 100k resistor between the ANALOG_IN and GND pins,
and observe the STN1170 wake up and print the welcome prompt.

STSLVG on wake on voltage change

ATZ reboot to activate

STSLCS confirm the trigger is
active

STSLEEP put device to sleep

LAB Manual for 18060 IVN

Page 12 Copyright © 2015 OBD Solutions

LAB 3:
OBD Development and Testing

Purpose:

To gain experience configuring the OBD simulator to aid development and testing.

Overview
In this lab, you will create and configure a virtual ECU, add a PID, and create a custom
fault set.

Creating a basic ECU

Enter the following commands in the “OBD Simulator” TeraTerm window:

Send the EL (“list ECUs”) command to verify that the ECU has been created:

SP 1 set the protocol to PWM

EDA delete all existing (default) ECUs

EA 3 create ECU #3

EN 3, “My ECU” specify ECU name

EAP 3, 10 assign ECU physical address $10

EAF 3, 6A assign ECU functional address $6A

EP 3, 1 set ECU’s protocol preset to PWM

PA 3, 0C, 0FA0 add PID (RPM = 1000)

E 3, on turn on the ECU

LAB Manual for 18060 IVN

Page 13 Copyright © 2015 OBD Solutions

Now, let’s add a simple fault set:

All that remains, is to test the newly created setup, by entering the following
commands in the “Development Board” TeraTerm window:

From the responses, you can see that the
MIL is set, there is one stored DTC (U1234),
and RPM is at its maximum value.

Besides obvious convenience, an OBD
simulator gives the developer the ability to set PIDs to arbitrary values outside the
“usual” value range, or even have the virtual ECU send an invalid response (e.g., RPM
reported as a 3-byte value). Both are useful for stress-testing OBD software in the lab.

01 01 MIL status & DTC count

01 0C RPM value

03 stored DTCs

DSA 3, 1, U1234 report a stored DTC (U1234) after a fault event

PAUDC 3, on enable automatic updates of stored DTC count

PAUMS 3, on enable automatic updates of MIL status

Reference Material

 SAE Standards (sae.org): J1979, J1850, J2012, J1939
 ISO Standards (iso.org): ISO 9141, ISO 14230, ISO 15765
 OBD Software Development Tutorials

http://www.obdsol.com/articles/
 ECUsim 2000 User Guide

http://www.scantool.net/scantool/downloads/101/ecusim_2000-ug.pdf
 ECUsim 2000/5100 Programming Manual

http://www.scantool.net/static/documentation/ecusim/ecusim-pm.pdf
 STN1100 Family Reference and Programming Manual

http://www.scantool.net/scantool/downloads/98/stn1100-frpm.pdf

