LAB Manual for 18060 IVN

MASTERSs 2014
LAB Manual for 18060 IVN

Interfacing with Vehicle Networks: Best
Practices

Table of Contents

Lab 1 Instructions 2
Lab 2 Instructions 10
Lab 3 Instructions 12

Reference Material 12

Page Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

LAB 1:
Access OBD Data

Purpose:

Become familiar with the development tools: OBD development board and OBD simu-
lator, and access vehicle data: vehicle speed, RPM, DTCs, and VIN.

Overview

In this lab, we will set up the OBD development board and the OBD Simulator, connect
to them from the PC using a terminal emulator, and request and interpret vehicle pa-
rameters.

OBD Simulator

As the name suggests, the purpose of this device is to simulate the on-board diagnos-
tic system of a vehicle. The ECUsim 2000 is capable of simulating all legislated OBD
protocols, and supports a wide range of diagnostic services and parameters.

The unit, shown in Figure 1, has five knobs assigned to common PIDs, including vehi-
cle speed and engine speed (RPM). The “Fault” button sets stored, pending, and per-
manent DTCs. The USB port can be used to monitor OBD traffic, and configure the
simulator.

OBD Development Board

The OBD development board (Figure 2) is a fully functioning OBD to USB interface. It
consists of the “interconnect” board and three modules:

o OBD Interpreter Module: a PIC24H-based intelligent OBD controller

« OBD Transceiver Module: provides level-shifting to/from OBD/TTL

« Power Module: provides load dump/reverse polarity protection, filter-
ing out of spikes and dips, switches off peripherals in sleep, regulates volt-
age down to 5V and 3.3V

The board can be powered either via the power jack, or the OBD port. It features a
number of jumpers and tap points, to facilitate experimentation during development
and troubleshooting.

Page 2 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Figure 1: OBD Simulator

" &

ci2 c11

ECUsim

Wuu.ecusims.com
Rev B l., =
H

RoHS
([]

At
KNOB1-TMP

A
KNOB2-RPM

oW .
KNOB3-SPD

11 bit/5 Baud Init

250 kbps

\

500 kbp:

(&)
| 3
3

.

5

[

c

P —
o

] 0

e

=

)

~ i
7 (%)
o)

<

)

~

A

5 (2

2

Ez

| 3 29 bit/Fast I

Al D tard
KNOB4-02U KNOBS-MAF

1 - “Power” LED

2 - “Link” LED

3 - “Malfunction Indicator Light” LED

4 - PID Control Knobs

5 - “Fault” button

Figure 2: OBD Development Board

¢

ns
1p8 -
b RTS STN_CTS| 1 &
4 Rx STN_TX| 2
> STN_RX| 3
5V
BND.
2 L
¢ 1o
RESET RST_NUH
A4 159
HS_CAN_TX 4 - CAN_|
HS_CAN_RX b L CAN_
TART_CTS 4
TRTTR 4 ?.B-:
TART_RX B 33y z
GND| GND.
4 SH_CAN_RX
TSORX b P SH_CAN_TX
oKX 4 . P SH_CAN_NODE®
oL TX 4 P SH_CAN_MODE1
P SH_CAN_LOAD
RST_NUF p » SCEEP
» PRR_SAVE
Ed
[TR g o
&
10 v
= RESET b » pun/oeR
ANALOG_IN b UPH_RX

5
3
»
2
R
£

< PHI_RX
» JI860_BUS-TX.
P J850_BUS+_TX

‘S_CAN_NODE® D
‘SW_CAN_MODES b
SU_CAN_LOAD b

HE_CAN_TX b
HS_CAN_RX 4
PHR_SAVE b
T0_AX 4
TSOKTX b
oo g 3
PUM/TPE b
UPHRX 4

PUH_RX 4
T2B50_BUS-_TX b
4858_BUS+_TX b

& ﬁ:uujus-

CN12 CN18

20 1s_caN_LO,

6 - Configuration DIP switch

7 - OBD port
8 - USB port
9 - Power jack (12VDC)

0BD Interconnect
Development Board

(C> 2014 OBD Solutions
Rev F

>
PRCSAOE

PUR_SAUE.UDLC [1
AP SU_CAN 4

oND
AP MS_CAN_HI
4P rS_CAN_LO

PHR_SAVE_UDLC
EXY

AP HS_CAN_HI
4bHs_caN Lo
AP K-LINE

b L-LINE

A TT850_BUS-

CNi1 CN13

%)
=
]

2
120 [B) o
oLc_ran/a2v [l o
oue_rau [0l o

Page 3

1 - OBD interpreter module (STN1170)

2 - OBD transceiver module
3 - Power module

4 - “Power” LED
5 - Power jack (12VDC)
6 - OBD port

Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Figure 3: Connection Diagram

41 00 80 08 00 10

Dstprs
AUTO, SAE J1850 PWM [AT]

Step 1: Set up OBD simulator and Development Board

1.

2.

o s

Plug the 12V end of the power supply into the power jack of the OBD simulator.
The “Power” LED on the OBD Simulator should light up.

Connect the development board to the OBD simulator, using the OBD to DB15 ca-
ble. The “Power” LED on the development board should light up.

Launch TeraTerm, select the COM port, and set it up for 115200 kbps. This will be
your “OBD Simulator’” terminal.

Connect the development board to the PC using the USB cabile.

Launch a 2nd TeraTerm window, select the new COM port, and set it up for 9600
kbps. This will be your ‘Development Board” terminal. Hit ‘Enter’ to test communi-
cation.

Connect the OBD simulator to the PC using the 2nd USB cable.

Page 4 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Step 2: Request and Interpret OBD Data

In this step, we will set both the simulator and the development board to the same
OBD protocol, send OBD requests, and receive and interpret responses.

Type the following commands in their respective TeraTerm windows:

OBD Simulator: Development board:
SI print device version STP 11 protocol = J1850 PWM
SP 1 protocol = J1850 PWM STPRS print protocol
SPI print protocol ATH1 turn headers on
. COM35:115200baud - ECUsim 2000 4T _ o] x| [, CoM63:9600baud - Development Board WT _ ol x|

File Edit Setup Caontrol MWindow Help File Edit Setup Caontrol Window Help

ST52000
[FB] v3.1.6
131818005341

2.0
0x0100, Bx067F, Bx3003
0=4F609893

J1858 PUH

Now, you’re ready to request OBD data. Enter the following commands in the
“Development board” window:

b, COME2:9600baud - Development Board YT _ O] x|
01 00 supported PIDs File Edit Setup Control Mindow Help
01 oD vehicle speed >01 00
01 0C RPM 41 6B 10 30 13 80
41 6B 18 0B 106 3E
- How many ECUs responded to 41 6B 28 00 10 6C
each request? 01 6D
- What are their addresses? 41 6B 10

41 6B 18
41 6B 28

Turn the “SPD” and “RPM” knobs,
and repeat the requests (you can hit piiRgtIe

Enter’ to repeat the last command). ﬂ EE %g

- Which bytes are changing, in each
case?
- What are the minimum and maximum values (in hex)?

Turn the knobs roughly half a turn, and record the hex values for

Speed: RPM:

Page 5 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Responses to the 0100 request give you three important pieces of information:

« How many ECUs on the network support legislated OBDII PIDs
e Address of each ECU
e Which PIDs are supported by each ECU

ECU count is equal to the number of responses you get to 0100. Address of the ECU
is encoded in the header. Supported PIDs are bit-encoded in the data bytes, like this
(from SAE J1979, Digital Annex):

Supported Scaling/Bit
PID/OBDMID/ Number of Data Bytes =4
TID/INFOTYPE Data A - D or B - E: Bit Evaluation
(Hex) PID/OBDMID/TID/INFOTYPE Supported (Hex)
00 Data Abit 7 01
Data A bit 6 02 0 = not supported
: : 1 = supported
Data D bit 0 20

In our example, there were three responses, and looking at the third byte, we know the
ECU addresses are 10, 18, and 28.

To learn how to determine which PIDs are supported by an ECU, let’s look at the first
response from our example:

41 6B 10 41 00 BE 1B 30 13 80

The first three bytes are the header, bytes 4 and 5 mean “this is a response to 01 00,
the next four bytes are the data, and the last byte is the CRC (checkbyte).

Let’s convert the hex bytes to binary, and count the bits to see which PIDs are
supported:

PID 01 02 03 04 05 06 07 08
0xBE = 1 0 1 1 1 1 1 0
PID 09 0A 0B 0C 0D OE OF 10
0x1B = 0 0 0 1 1 0 1 1
PID 11 12 13 14 15 16 17 18
0x30 = 0 0 1 1 0 0 0 0
PID 19 1A 1B 1C 1D 1E 1F 20
0x13 = 0 0 0 1 0 0 1 1

Note that the last bit indicates that there are more supported PIDs, in the next range
(PIDs 20-40). Send the 0120 request and repeat the process for the next 32 PIDs. If
the last bit (PID 40) is supported, send 0140, and so on.

Page 6 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Use the following PID definition to decode the vehicle speed value you recorded
earlier:

PID Data Min. Max. External Test Equipment
(hex) Description Byte | Value Value |Scaling/Bit| Sl (Metric) / English Display
0D | Vehicle Speed Sensor A 0 km/h | 255 km/h 1 km/h JVSS: xxx km/h (xxx mph)
per bit

VSS shall display vehicle road speed. Vehicle speed may be derived from a vehicle speed sensor,
calculated by the ECU using other speed sensors, or obtained from the vehicle serial data communication
bus.

In other words, to get vehicle speed (in km/h), simply convert the hex value to decimal.
For example:

Raw coolant temperature value (hex): 6E
Ox6E =110
110-40=70

Coolant temperature is 70°C

Engine speed (RPM) definition:

PID Data Min. Max. External Test Equipment
(hex) Description Byte | Value Value |Scaling/Bit| Sl (Metric) / English Display
0C |Engine RPM A B | Omin-1 |16383.75] 1/4rpm [RPM: 000 min-1
min-1 per bit
Engine RPM shall display revolutions per minute of the engine crankshaft.

In other words: convert the 16-bit hex value you recorded to decimal, and divide by 4
to get RPM. For example:

Raw RPM value (hex): OEC4
O0XOEC4 = 3780
3780 +4 =945

RPM is 945 min™

Let’'s now request status of the MIL, DTC count, and DTCs:

01 01 MIL status @.COM@:%DUbaud-DevelopmfantBoard‘u'T — O] x|
File Edit Setup Control MWindow Help
03 stored DTCs
07 ding DTC ~01 01
pending s 41 6B 10 41 01 60 07 EF 80 AF
0A permanent DTCs 41 6B 18 41 01 00 0O DO BD 24

41 6B 28 41 01 00 60 00 00 F?

MIL status and DTC count are encoded in
the first data byte. In our example, it's 00,
meaning MIL is off and there are no DTCs.

Requests for stored, pending, and
permanent DTCs return “NO DATA” —
ECUs have no DTCs to report.

Page 7 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Press the “Fault” button on ECUsim, and repeat the requests:

01 01 MIL status

g? sto:i?d D[T)?z b, COMG9:9600baud - Development Board ¥T -0l x|
pending S Eile Edit Setup Control Window Help
0A permanent DTCs

The first byte of the first response to 0101 is
0x86. The first bit is now 1, meaning the MIL
is on. The DTC count is 6.

The next two responses are 81 and 80,
meaning that ECUs number 18 and 28 have
1 and 0 DTCs, respectively.

Let’'s now dissect the response to the
request for stored DTCs (03):

41 6B 10 43 01 0O 02 00 03 00 43
41 6B 10 43 43 060 82 00 C1 00 11
41 6B 18 43 91 01 18

ECU #10 responded with two messages, containing 6 DTCs.
ECU #18 responded with a single message, containing one DTC.

Byte 1 Byte 2
b7 b6 b5 b4 b3 b2 b1 b0 | b7 b6 b5 b4 b3 b2 b1 b0

[l
|__ 4th character of code
(Hexadecimal O ... F)
Idisplay character 5]

3rd character of code
(Hexadecimal O ... F)
Idisplay character 4]

Area of vehicle system
(Hexadecimal O ... F)
Idisplay character 3]

00 = ISO/SAE controlled
01 = manufacturer controlled

for powertrain: these bits are ISO/SAE controlled, for all———-—‘"’""}? f :gggﬁg Conftro::ej
others they are manufacturer controlled. el controtie

Idisplay character 2]
for powertrain: /
11 = manufacturer controlled for P3000 to P3399

11 = SAE reserved for P3400 to P3999

00 = powertrain (P)
01 = chassis (C)

10 = body (B)
Display character 3 is used to identify a specific vehicle 11 = network (U)
area. Within any area, display characters 4 and 5 allow up to|| [display character 1;
256 code definitions

Page 8 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

The SAE J2012 diagram shows how the DTCs are encoded. Notice how the last three
characters of a DTC do not need to be translated from ASCII. Therefore, the only part
that requires any effort, is decoding the letter-number combination (first nibble). Here’s
a handy chart to help us with this task:

This is how we would decode the first, fourth, and

Try decoding the rest of the DTCs, on your own.

0 1 2 3 sixth DTCs from our example:
0 1 2 3
01 00 = P0100
4 6 7 43 00 = C0300
C1 00 =U0100
8 A B
C E F

C|{m|(O |
O|w© | wm

As our final exercise of this lab, we will request and decode the VIN (0902). Besides
the fields you are familiar with, the VIN response frames add a sequence number field.
Also, the first frame starts with three fill bytes.

Send 09 02 to the ECUsim, and you will get the following response:

41 6B 10 49 02 01 00 00 00 31 2F
41 6B 10 49 02 02 47 31 4A 43 1D
41 6B 10 49 02 03 35 34 34 34 EC
41 6B 10 49 02 04 52 37 32 35 E9
41 6B 10 49 02 05 32 33 36 37 4C

Use the ASCII code chart, to decode the VIN:

ASCII Code Chart
0 1 2 3 4 5 6 7 8 9 A B C D E F

O|NUL | SOH |STX |ETX |EOT |ENQ | ACK |BEL | BS | HT | LF | VT | FF | CR | SO | SI
1|DLE |DC1|DC2 |DC3 | DC4 |[NAK | SYN |ETB [CAN | EM |SUB|ESC| FS | GS | RS | US
2 ! " # $ % & ' () * + ’ = /
3|1 0 1 2 3 4 5 6 7 8 9 : H < = > ?
4| @ A B C D E F G H I J K L M N 0
51 P Q R S T U ') W X Y Z [\] A -
6 al|b C d|e| f| 9| h i j k 1| m|n o
7l p q r s t | u v | w X y z { | } ~ |DEL
VIN:

Page 9 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

LAB 2:
Sleep/Wakeup

Purpose:

To explore the various sleep/wakeup mechanisms.

Overview

In this lab, we will show the steps required to configure and activate sleep and wakeup

triggers.

Automatic Sleep and Wakeup on UART (In-)
activity

We will enter the following commands in the
“Development Board” TeraTerm window:

STSLCS
STSLUIT 10

print sleep summary
sleep after 10 seconds of
inactivity

STSLU on, on enable both sleep and

wakeup triggers

ATZ reboot to activate
STSLCS check new trigger settings
[wait 10 s]

[hit spacebar]

STSLU off, on disable sleep on UART 1in-

activity

Watch the LEDs on the Power Module, as you
wait for the STN1170 to go to sleep. When
they turn off, you can hit the spacebar (or any
key) to wake up the device. When you do, the
STN1170 will wake up and print the welcome
prompt.

Type the last command, to disable the “sleep
on UART inactivity” trigger.

Page 10

@COMEQ:QEUUhaud—DevelopmentBoardW
Eile Edit Setup Control Window Help

_lo/x|

NATIVE
LOW PHR = LOW
: OFF, 1200 s
: : ON, 0-30000 us

EXT INPUT: LOW = SLEEP
EXT SLEEP: OFF, LOW FOR 3000 ms
EXT WAKE: ON, HIGH FOR 2080 ms
YL SLEEP: OFF, <13.00Y FOR 600 s
YL WAKE: OFF, >13.20Y FOR 1 s
YCHG WAKE: OFF, 8.20Y IN 1000 ms

>STSLUIT 10
0K

>STSLU on, on
1] 4

>ATZ

ELM327 v1.3a

>STSLCS

CTRL MODE: NATIVE

PHR_CTRL: LOW PHR = LOW

UART SLEEP: ON, 18 s

UART WAKE: ON, ©0-30000 us

EXT INPUT: LOW = SLEEP

EXT SLEEP: OFF, LOW FOR 3000 ms
EXT WAKE: ON, HIGH FOR 2008 ms
YL SLEEP: OFF, <13.00Y FOR 608 s
YL WAKE: OFF, >13.26Y FOR 1 s
YCHG WAKE: OFF, 8.26Y IN 1006 ms

>
ELM327 v1.3a
>STSLU off, on
0K

Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

SLEEP Command and Wake-up on Voltage Change

The “wake up on voltage change” is perhaps one of the most useful trigger wake-up
triggers. The electrical system of the vehicle produces a steady voltage, when the
vehicle is at rest. However, there are many things that can produce a measurable dip
— the driver pushes the “unlock” button on the car remote, opens a door, or cranks the
engine — that can be used to wake up the device.

We will use a resistor to simulate a dip, to bring the device out of the sleep state.
Here is the complete procedure for this portion of the lab:

1. Issue the STVR command to read the current voltage
2. Connect the 100k resistor between the ANALOG _IN and GND pins of the
STN1170 module

i
© Beamsra W
$ S4¥-8031y B
.

'nsr_rwn
z | b
M=

Pty jl
£ |

"

€

3. Read the new voltage (STVR). It should be roughly 1 volt less than what you
measured in step #1
4. Enter the following commands:

STSLVG on wake on voltage change

ATZ reboot to activate

STSLCS confirm the trigger 1is
active

STSLEEP put device to sleep

5. Briefly connect the 100k resistor between the ANALOG _IN and GND pins,
and observe the STN1170 wake up and print the welcome prompt.

Page 11 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

LAB 3:
OBD Development and Testing

Purpose:

To gain experience configuring the OBD simulator to aid development and testing.

Overview
In this lab, you will create and configure a virtual ECU, add a PID, and create a custom
fault set.

Creating a basic ECU

Enter the following commands in the “OBD Simulator” TeraTerm window:

SP 1 set the protocol to PWM

EDA delete all existing (default) ECUs
EA 3 create ECU #3

EN 3, “My ECU” specify ECU name

EAP 3, 10 assign ECU physical address $10
EAF 3, 6A assign ECU functional address $6A
EP 3, 1 set ECU’s protocol preset to PWM

PA 3, 0C, OFAQ add PID (RPM = 1000)
E 3, on turn on the ECU

Send the EL (“list ECUs”) command to verify that the ECU has been created:

[COR35:115200baud - ECUsim 2000 4T - O] x|
Eile Edit 3Setup Control MWindow Help

Page 12 Copyright © 2015 OBD Solutions

LAB Manual for 18060 IVN

Now, let’s add a simple fault set:

DSA 3, 1, U1234 report a stored DTC (U1234) after a fault event
PAUDC 3, on enable automatic updates of stored DTC count
PAUMS 3, on enable automatic updates of MIL status

All that remains, is to test the newly created setup, by entering the following
commands in the “Development Board” TeraTerm window:

LM COMG2:9600baud - Developrment Board YT - O] x|
01 01 MIL status & DTC count File Edit Setup Contral Window Help
01 ocC RPM value

>01 01
03 stored DTCs 41 6B 10 41 01 81 00 00 80 SE

>B1 08C

41 6B 10 41 O6C FF FF 59

From the responses, you can see that the
MIL is set, there is one stored DTC (U1234), Mi5i
and RPM is at its maximum value. 41 6B 10 43 D2 34 00 00 00 00 04

>

Besides obvious convenience, an OBD
simulator gives the developer the ability to set PIDs to arbitrary values outside the

“usual” value range, or even have the virtual ECU send an invalid response (e.g., RPM
reported as a 3-byte value). Both are useful for stress-testing OBD software in the lab.

Reference Material

« SAE Standards (sae.org): J1979, J1850, J2012, J1939

e IS0 Standards (iso.org): ISO 9141, ISO 14230, ISO 15765

« OBD Software Development Tutorials
http://www.obdsol.com/articles/

e ECUsim 2000 User Guide
http://www.scantool.net/scantool/downloads/101/ecusim_2000-ug.pdf

« ECUsim 2000/5100 Programming Manual
http://www.scantool.net/static/documentation/ecusim/ecusim-pm.pdf

« STN1100 Family Reference and Programming Manual
http://www.scantool.net/scantool/downloads/98/stn1100-frpm.pdf

Page 13 Copyright © 2015 OBD Solutions

